气孔(螳螂虾)视觉系统最近提供了一种用于设计范式转换极化和多光谱成像传感器的蓝图,使解决方案能够挑战医疗和遥感问题。然而,这些生物透视传感器缺乏气孔视觉系统的高动态范围(HDR)和异步偏振视觉功能,将时间分辨率限制为\〜12 ms和动态范围到\〜72 dB。在这里,我们提出了一种新的Stomatopod-Inspireation相机,其模仿持续和瞬态的生物视觉途径,以节省超出最大奈奎斯特帧速率的功率和样本数据。该生物启发传感器同时捕获同步强度帧和异步偏振亮度改变信息与百万倍的照明范围内的子毫秒延迟。我们的PDAVIS摄像机由346x260像素组成,组织在2×2宏像素中,该型滤光器有4个线性偏振滤波器偏移45度。使用基于低成本和延迟事件的算法和更准确但深度神经网络的更准确而是重建极化信息。我们的传感器用于图像在快速循环载荷下观察牛筋膜中单胶原纤维的单胶原纤维的动态性能
translated by 谷歌翻译
长期记忆(LSTM)经常性网络经常用于涉及时间序列数据(例如语音识别)的任务。与以前的LSTM加速器相比,它可以利用空间重量稀疏性或时间激活稀疏性,本文提出了一种称为“ Spartus”的新加速器,该加速器可利用时空的稀疏性来实现超低潜伏期推断。空间稀疏性是使用新的圆柱平衡的靶向辍学(CBTD)结构化修剪法诱导的,从而生成平衡工作负载的结构化稀疏重量矩阵。在Spartus硬件上运行的修剪网络可实现高达96%和94%的重量稀疏度,而Timit和LibrisPeech数据集的准确性损失微不足道。为了在LSTM中诱导时间稀疏性,我们将先前的Deltagru方法扩展到Deltalstm方法。将时空的稀疏与CBTD和Deltalstm相结合,可以节省重量存储器访问和相关的算术操作。 Spartus体系结构是可扩展的,并且在大小FPGA上实现时支持实时在线语音识别。 1024个神经元的单个deltalstm层的Spartus每样本延迟平均1 US。使用TIMIT数据集利用我们的测试LSTM网络上的时空稀疏性导致Spartus在其理论硬件性能上达到46倍的加速,以实现9.4 TOP/S有效批次1吞吐量和1.1 TOP/S/W PARTIC效率。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译